Recently ISA conducted a specific pathology program in Sujok research centre Nagpur on Diabetes under guidance of Dr Zohar Yagil.
After understanding the diabetes pathomechanics deeply following protocols were finalised for the treatment of diabetes……
Type 2 diabetes is a Wind deficient condition while type 1 diabetes is  purely a autoimmune problem.
Liver and muscles are culprits in T2DM  while islets of langherans is at fault in T1DM.
SO formulas for T2DM are L and I meridian are , II tone and , V sedate.
In D meridian tone I and sedate IV.
Chakras.. tone um vishuddha, sedate Um or Ah Swadishthana or Um manipura as per dominant energy of dryness or humidity respectively.

Triorigin ….Functional tonification of liver, muscles and endocrine pancreas.



Tonifying He in beta cells of pancreas(to increase insulin) and Ho in Alpha cells of pancreas(to decrease glucagon production).
In T1DM Creational tonification of endocrine pancreas is needed with sedation of immune system.
Also as per my knowledge working on the cell system as brightness meridian of CV ….sedate IV  and V, tone I and II in CV also give good results in T2DM. For all above formulas and details please visit .

WHILE doing research i found following facts  and studies on dairy products which shocked me .I feel all sujok therapist should know this information about diet in diabetes patients.
These facts and studies are taken from the famous book “THE CHINA STUDY” which is the best book available on nutrition in market.

TYPE 2 DIABETES, the most common form, often accompanies obesity. As we, as a nation, continue to gain weight, our rate of diabetes spirals out of control. In the eight years from 1990 to 1998, the incidence of diabetes increased 33%.Over 8% of American adults are diabetic, and over 150,000 young people have the disease. That translates to 16 million Americans. The scariest figure? One-third of those people with diabetes don’t yet know that they have it.  You know the situation is serious when our children, at the age of puberty, start falling prey to the form of diabetes usually reserved for adults over forty. One newspaper recently illustrated the epidemic with the story of a girl who weighed 350 pounds at the age of fifteen, had the “adult-onset” form of diabetes and was injecting insulin into her body three times a day.What is diabetes, why should we care about it and how do we stop it from happening to us?


Almost all cases of diabetes are either Type 1 or Type 2. Type 1 develops in children and adolescents, and thus is sometimes referred to as juvenile-onset diabetes. This form accounts for 5% to 10% of all diabetes cases. Type 2, which accounts for 90% to 95% of all cases, used to occur primarily in adults age forty and up, and thus was called adult-onset diabetes. But because up to 45% of new diabetes cases in children are Type 2 diabetes,4 the age-specific names are being dropped, and the two forms of diabetes are simply referred to as Type 1 and Type 2.

In both types, the disease begins with dysfunctional glucose metabolism. Normal metabolism goes like this: ¢ We eat food. ¢ The food is digested and the carbohydrate part is broken down into simple sugars, much of which is glucose. ¢ Glucose (blood sugar) enters the blood, and insulin is produced by the pancreas to manage its transport and distribution around the body. ¢ Insulin, acting like an usher, opens doors for glucose into different cells for a variety of purposes. Some of the glucose is converted to short-term energy for immediate cell use, and some is stored as long-term energy (fat) for later use. As a person develops diabetes, this metabolic process collapses. Type 1 diabetics cannot produce adequate insulin because the insulin-producing cells of their pancreas have been destroyed. This is the result of the body attacking itself, making Type 1 diabetes an autoimmune disease. (Type 1 diabetes and other autoimmune diseases are discussed in chapter nine.) Type 2 diabetics can produce insulin, but the insulin doesn’t do its job. This is called insulin resistance, which means that once the insulin starts “giving orders” to dispatch the blood sugar, the body doesn’t pay attention. The insulin is rendered ineffective, and the blood sugar is not metabolized properly. Imagine your body as an airport, complete with vast parking areas. Each unit of your blood sugar is an individual traveler. After you eat, your blood sugar rises. In our analogy, then, that means lots of travelers would start to arrive at the airport. The people would drive in, park in a lot and walk to the stop where the shuttle bus is supposed to pick them up. As your blood sugar continues to rise, all the airport parking lots would fill to capacity, and all the people would congregate at the shuttle bus stops. The shuttle buses, of course, represent insulin. In the diabetic airport, unfortunately, there are all sorts of problems with the buses. In the Type 1 diabetic airport, the shuttle buses simply don’t exist. The only shuttle bus manufacturer in the known universe, Pancreas Company, was shut down. In the Type 2 diabetic airport, there are some shuttle buses, but they don’t work very well. In both cases, travelers never get to where they want to go. The airport system breaks down, and chaos ensues. In real life, this corresponds with a rise in blood sugar to dangerous levels. In fact, diabetes  is diagnosed by the observation of elevated blood sugar levels, or its “spillage” into urine. What are the long-term health risks of glucose metabolism being disrupted? Here’s a summary, taken from a report from the Centers for Disease Control.


Modern drugs and surgery offer no cure for diabetics. At best, current drugs allow diabetics to maintain a reasonably functional lifestyle, but these drugs will never treat the cause of the disease. As a consequence, diabetics face a lifetime of drugs and medications, making diabetes an enormously costly disease. The economic toll of diabetes in the u.s.: over $130 billion a year.But there is hope. In fact, there is much more than hope. The food we eat has enormous influence over this disease. The right diet not only prevents but also treats diabetes. What, then, is the “right” diet?
You can probably guess what I’m going to say, but let the research speak for itself.


Like most chronic diseases, diabetes shows up more often in some parts of the world than in others. This has been known for a hundred years. It has also been well documented that those populations with low rates of diabetes eat different diets than those populations with high rates of diabetes. But is that just a coincidence, or is there something else at work?


Almost seventy years ago, H.P. Himsworth compiled all the existing research in a report comparing diets and diabetes rates in six countries. What he found was that some cultures were consuming high-fat diets, while others had diets high in carbohydrates. These fat vs. carbohydrate consumption patterns were the result of animal vs. plant food consumption. Chart 7.1 documents the diet and disease conditions for these countries in the early part of the twentieth century.  As carbohydrate intake goes up and fat intake goes down, the number of deaths from diabetes plummets from 20.4 to 2.9 per 100,000 people. The verdict? A high-carbohydrate, low-fat diet-a plant-based diet-may help to prevent diabetes. Thirty years later, the question was reexamined. After examining four countries from Southeast Asia and South America, researchers again found that high-carbohydrate diets were linked to low rates of diabetes. Researchers noted that the country with the highest rate of diabetes, Uruguay, had a diet that was “typically ‘Western’ in character, being high in calories, animal protein, [total) fat and animal fat.” Countries with low rates of diabetes used a diet that was “relatively lower in protein (particularly animal protein), fat and animal fat. A high proportion of calories is derived from carbohydrates, particularly from rice.” These same researchers enlarged their study to eleven countries through Central and South America and Asia. The strongest association they found with diabetes was excess weight.? Populations eating the most “Western” type of diet also had the highest cholesterol levels, which in turn was strongly associated with the rate of diabetes.? Is this starting to sound familiar? WITHIN ONE POPULATION These old, cross-cultural studies can be crude, resulting in conclusions that are not entirely reliable. Perhaps the difference in diabetes rates in the above studies were not due to diet, but to genetics. Perhaps other unmeasured cultural factors, like phYSical activity, were more relevant. A better test would be a study of diabetes rates in a single population. The Seventh-day Adventists population is a good example. They are an interesting group of people to study because of their dietary habits: their religion encourages them to stay away from meat, fish, eggs, coffee, alcohol and tobacco. As a result, half of them are vegetarian. But 90% of these vegetarians still consume dairy and/or egg products, thus deriving a Significant amount of their calories from animal sources. It should also be noted that the meat-eating Adventists are not the meatiest of eaters. They consume about three servings of beef a week, and less than one serving a week of fish and poultry.I know plenty of people who consume this amount of meat (including fish and poultry) every two days. In dietary studies involving the Adventists, scientists compare “moderate” vegetarians to “moderate” meat eaters. This is not a big difference. Even so, the Adventist vegetarians are much healthier than their meat eating counterparts. Those Adventists that “deprived” themselves of meat also “deprived” themselves of the ravages of diabetes. Compared to the meat eaters, the vegetarians had about one-half the rate of diabetes.  They also had almost half the rate of obesity. In another study, scientists measured diets and diabetes in a population of japanese American men in Washington State. These men were the sons ofjapanese immigrants to the u.s. Remarkably, they had more than four times the prevalence of diabetes than the average rate found in similar-aged men who stayed in japan. So what happened? For japanese Americans, the ones who developed diabetes also ate the most animal protein, animal fat and dietary cholesterol, each of which is only found in animal-based foods. Total fat intake also was higher among the diabetics. These same dietary characteristics also resulted in excess weight. These second-generation japanese Americans ate a meatier diet with less plant-based food than men born in japan. The researchers wrote, “Apparently, the eating habits of japanese men living in the United States resemble more the American eating style than the japanese.” The consequence: four times as much incidence of diabetes,  Some other studies: ¢ Researchers found that increased fat intake was associated with an increased rate of Type 2 diabetes among 1,300 people in the San Luis valley in Colorado, They said, “The findings support the hypothesis that high-fat, low-carbohydrate diets are associated with the onset of non-insulin-dependent [Type 2] diabetes mellitus in humans.” ¢ In the past twenty-five years, the rate at which children in japan contract Type 2 diabetes has more than tripled, Researchers note that consumption of animal protein and animal fat has drastically increased in the past fifty years. Researchers say that this dietary shift, along with low exercise levels, might be to blame for this explosion of diabetes.  ¢ In England and Wales the rate of diabetes markedly dropped from 1940 to 1950, largely during World War II when food consumption patterns changed markedly. During the war and its aftermath, fiber and grain intake went up and fat intake went down. People ate “lower” on the food chain because of national necessity. Around 1950, though, people gave up the grain-based diets and returned to eating more fat, more sugar and less fiber. Sure enough, diabetes rates started going Up.¢ Researchers studied 36,000 women in Iowa for six years. All were free of diabetes at the start of the study, but more than 1,100 cases of diabetes developed after six years. The women who were least likely to get diabetes were those that ate the most whole grains and fiber14-those whose diets contained the most carbohydrates (the complex kind found in whole foods). All of these findings support the idea that both across and within populations, high-fiber, whole, plant-based foods protect against diabetes, and high-fat, high-protein, animal-based foods promote diabetes.
All of the research cited above was observational and an observed association, even if frequently seen, may only be an incidental association that masks the real cause-effect relationship of environment (including diet) and disease. There is, however, also research of the “controlled” or intervention variety. This involves changing the diets of people who already have either full-blown Type 1 or Type 2 diabetes or mild diabetic symptoms (impaired glucose tolerance). James Anderson, M.D., is one of the most prominent scientists studying diet and diabetes today, garnering dramatic results using dietary means alone. One of his studies examined the effects of a high-fiber, high-carbohydrate, low-fat diet on twenty-five Type 1 diabetics and twenty-five Type 2 diabetics in a hospital settingY None of his fifty patients were overweight and all of them were taking insulin shots to control their blood sugar levels. His experimental diet consisted mostly of whole plant foods and the equivalent of only a cold cut or two of meat a day. He put his patients on the conservative, American-style diet recommended by the American Diabetes Association for one week and then switched them over to the experimental “veggie” diet for three weeks. He measured their blood sugar levels, cholesterol levels, weight and medication requirements. The results were impressive. Type 1 diabetics cannot produce insulin. It is difficult to imagine any dietary change that might aid their predicament. But after just three weeks, the Type 1 diabetic patients were able to lower their insulin medication by an average of 40%1 Their blood sugar profiles improved dramatically. Just as importantly, their cholesterol levels dropped by 30%PS Remember, one of the dangers of being diabetic is the secondary outcomes, heart disease and stroke. Lowering risk factors for those secondary outcomes by improving the cholesterol profile is almost as important as treating high blood sugar. Type 2 diabetics, unlike Type 1, are more “treatable” because they haven’t incurred such extensive damage to their pancreas. So when Anderson’s Type 2 patients ate the high-fiber, low-fat diet, the results were even more impressive. Of the twenty-five Type 2 patients, twenty-four were able to discontinue their insulin medication! Let me say that again. All but one person were able to discontinue their insulin medication in a matter of weeksPS One man had a twenty-one-year history of diabetes and was taking thirty-five units of insulin a day. After three weeks of intensive dietary treatment, his insulin dosage dropped to eight units a day. After eight weeks at home, his need for insulin shots vanished.Chart 7.2 shows a sample of patients and how eating a plant-based diet lowered their insulin medications. This is a huge effect. In another study of fourteen lean diabetic patients, Anderson found that diet alone could lower total cholesterol levels by 32% in just over two weeks. Some of the results are shown in Chart 7.3. These benefits, representing a decrease in blood cholesterol from 206 mgldL to 141 mgldL, are astounding-especially considering the speed with which they appear. Dr. Anderson also found no evidence that this cholesterol decrease was temporary as long as people continued on the diet; it remained low for four yearsY Another group of scientists at the Pritikin Center achieved equally spectacular results by prescribing a low-fat, plant-based diet and exercise to a group of diabetic patients. Of forty patients on medication at the start of the program, thirty-four were able to discontinue all medication after only twenty-six days. IS This research group also demonstrated that the benefits of a plant-based diet will last for years if the same diet is continued.These are examples of some very dramatic research, but they only scratch the surface of all the supporting research that has been done. One scientific paper reviewed nine publications citing the use of highcarbohydrate, high-fiber diets and two more standard-carbohydrate, high-fiber diets to treat diabetic patients. All eleven studies resulted in improved blood sugar and cholesterol levels. (Dietary fiber supplements, by the way, although beneficial, did not have same consistent effects as a change to a plant-based, whole foods dietYl THE PERSISTENCE OF HABIT As you can see by these findings, we can beat diabetes. Two recent studies considered a combination of diet and exercise effects on this diseaseY’ 23 One study placed 3,234 non-diabetic people at risk for diabetes (elevated blood sugar) into three different groupsY One group, the control, received standard dietary information and a drug placebo (no effect), one received the standard dietary information and the drug metformin, and a third group received “intensive” lifestyle intervention, which included a moderately low-fat diet and exercise plan to lose at least 7% of their weight. After almost three years, the lifestyle group had



58% fewer cases of diabetes than the control group. The drug group reduced the number of cases only by 31 %. Compared to the control, both treatments worked, but clearly a lifestyle change is much more powerful and safer than simply taking a drug. Moreover, the lifestyle change would be effective in solving other health problems, whereas the drug would not. The second study also found that the rate of diabetes could be reduced by 58% just by modest lifestyle changes, including exercise, weight loss and a moderately low-fat diet.23 Imagine what would happen if people fully adopted the healthiest diet: a whole foods, plantbased diet. I strongly suspect that virtually all Type 2 diabetes cases could be prevented. Unfortunately, misinformation and ingrained habits are wreaking havoc on our health. Our habit of eating hot dogs, hamburgers and French fries is killing us. Even Dr. James Anderson, who achieved profound results with many patients by prescribing a near-vegetarian diet, is not immune to habitual health advice. He writes, “Ideally, diets providing 70% of calories as carbohydrate and up to 70 gm fiber daily offer the greatest health benefits for individuals with diabetes. However, these diets allow only one to two ounces of meat daily and are impractical for home use for many individuals. ” Why does Professor Anderson, a very  fine researcher, say that such a diet is “impractical” and thereby prejudice his listeners before they even consider the evidence? Yes, changing your lifestyle may seem impractical. It may seem impractical to give up meat and high-fat foods, but I wonder how practical it is to be 350 pounds and have Type 2 diabetes at the age of fifteen, like the girl mentioned at the start of this chapter. I wonder how practical it is to have a lifelong condition that can’t be cured by drugs or surgery; a condition that often leads to heart disease, stroke, blindness or amputation; a condition that might require you to inject insulin into your body every day for the rest of your life. Radically changing our diets may be “impractical,” but it might also be worth it.
Smile thanks to Prof. PARK Jae woo.